セミナー 機械学習 教師あり学習 Python ディープラーニング 線形識別

サイトマップサイトマップ よくあるお問合わせよくあるお問合せ リクエストリクエスト セミナー会場セミナー会場へのアクセス リンクリンク
セミナーのメニュー
  ヘルスケア系
4月
5月
6月
7月〜

化学・電気系 その他各分野
4月
5月
6月
7月〜
出版物出版物
新刊図書新刊図書 月刊 化学物質管理Gmpeople
ヘルスケア系ヘルスケア系化学・電気系化学・電気系
通信教育講座通信教育講座
セミナー収録DVDDVD
電子書籍・学習ソフトDVD
セミナー講師のコラムです。講師コラム
お申し込み・振込み要領お申込み・振込要領
案内登録案内登録
↑ ↑ ↑
新着セミナー、新刊図書情報をお届けします。


SSL GMOグローバルサインのサイトシール  


セミナー 機械学習 教師あり学習 Python ディープラーニング 線形識別


*その他 機械学習・ディープラーニング・人工知能: 関連セミナー、書籍はこちら:

*** 好評につき、定員に達しました。お申込みありがとうございました ***

Python実習つき:機械学習の理解を深める!
全5パート、5つの課題に取り組みます!


Python
で学ぶ機械学習入門

〜線形識別からディープラーニングまで〜

講師

大阪大学 産業科学研究所
 知能アーキテクチャ研究分野 准教授 博士(情報科学)  福井 健一 先生

* 希望者は講師との名刺交換が可能です

講師紹介

2005年〜2010年3月 大阪大学産業科学研究所新産業創造物質基盤技術研究センター・特任助手(職名改名により2007年より特任助教)
2010年3月 大阪大学大学院情報科学研究科より 博士(情報科学)取得
2010年4月〜2015年6月 大阪大学産業科学研究所第1研究部門(情報・量子科学系)・助教
2015年7月〜現在  同 准教授

→このセミナーを知人に紹介する

<その他関連セミナー>

5月23日 Pythonを使って学ぶ機械学習〜PC実習つきセミナー〜

日時・会場・受講料

●日時 2017年5月15日(月) 10:30-17:00
●会場 [東京・京急蒲田]大田区産業プラザ(PiO)6階C会議室 →「セミナー会場へのアクセス」
●受講料 1名46,440円(税込(消費税8%)、資料・昼食付)
 *1社2名以上同時申込の場合、1名につき35,640円
      *学校法人割引;学生、教員のご参加は受講料50%割引。→「セミナー申込要領・手順」を確認下さい。

●録音・撮影行為は固くお断り致します。
●講義中のパソコン・携帯電話の使用はご遠慮下さい。


■ セミナーお申込手順からセミナー当日の主な流れ →

セミナーに際して

▽実習PCについて
ノートPCをご持参ください。事前に以下のインストールをお願い致します。


・要インストールソフト
「Anaconda」 (Python 3.6バージョン)
https://www.continuum.io/downloads
「Chainer」
http://chainer.org
Anacondaインストール後に,コマンドラインから ”pip install chainer”でインストール可
 *本件についての問い合わせ窓口: req@johokiko.co.jp

■講師より受講者へ
昨今のAIブームの火付け役とも言えるディープラーニングは強力な学習手法ですが、万能ではありません。問題の特性をよく理解して適切な機械学習手法を選択し、適切に用いることが重要です。本セミナーでは、機械学習の基本的な教師あり学習手法の考え方や理論的背景の説明とともに、Pythonを用いた簡単な実習を交えて機械学習の理解を深めます。これから本格的な勉強を始める前に概要と雰囲気を掴むには最適かと思います。

■受講対象者は?
・機械学習やディープラーニングに取り組んで間もない方
・Python等のツールを使いたい方、使いこなしたい方(Python初心者も歓迎)
・大学初等数学、情報系学部程度のプログラミング知識を持っていることが望ましい

■受講して得られる知見、ノウハウは?
・機械学習の体系的理解(俯瞰的知識)
・いくつかの代表的な教師あり学習手法とその理論的背景、またその実運用(実習を通じて)
・ディープラーニングの基本的な考え方と実運用の指針(実習を通じて)

※定員20名に達し次第、申込を締め切らせて頂きます。お申込はお早めに。
※問い合わせ先 03-5740-8755
※よくあるお問合せ http://www.johokiko.co.jp/qanda/

セミナー内容

1 機械学習の概要
 1.1 ビッグデータ時代
 1.2 機械学習とは?
 1.3 最近の例
 1.4 機械学習の分類
 1.5 教師あり学習
  1.5.1 識別
  1.5.2 回帰
 1.6 教師なし学習
  1.6.1 モデル推定
  1.6.2 パターンマイニング
 1.7 半教師あり学習
 1.8 深層学習(ディープラーニング)
 1.9 強化学習
 1.10 機械学習の基本的な手順
  1.10.1 前処理
  1.10.2 評価基準の設定:クロスバリエーション
  1.10.3 簡単な識別器:k-近傍法
  1.10.4 評価指標:F値,ROC曲線
 1.11 k-近傍法を用いた実習:機械学習の基本的な手順の確認

2 識別(1):ベイズ学習
 2.1 統計的機械学習とは
 2.2 学習データの対数尤度
 2.3 1次元2値の場合
 2.4 ナイーブベイズ分類器
 2.5 ベイジアンネットワーク
 2.6 簡単な例
 2.7 ベイジアンネットワークの構成
 2.8 ベイジアンネットワークを用いた識別
 2.9 ナイーブベイズ分類器を用いた実習

3 識別(2):線形識別モデル
 3.1 識別モデル
 3.2 ロジスティック識別概要
 3.3 ロジスティック識別の導出
 3.4 ロジスティック識別器の学習
 3.5 確率的最急勾配法
 3.6 正則化
 3.7 ロジスティック識別器を用いた実習

4 識別(3):サポートベクトルマシン
 4.1 サポートベクトルマシンとは
 4.2 マージン最大化のための定式化
 4.3 マージン最大化とする識別面の計算
 4.4 ソフトマージン
 4.5 カーネル関数
 4.6 簡単なカーネル関数の例
 4.7 入れ子交差検証によるハイパーパラメータ調整
 4.8 サポートベクトルマシンを用いた実習

5 識別(4):パーセプトロンから深層学習まで
 5.1 単純パーセプトロン
 5.2 誤り訂正学習
 5.3 最小二乗法による学習
 5.4 多層ニューラルネットワーク
 5.5 逆誤差伝搬法による学習
 5.6 深層学習とは
  5.6.1 従来の識別学習との違い
  5.6.2 深層学習の分類
  5.6.3 最近の応用例
 5.7 多階層ニューラルネットワークの学習における問題
 5.8 自己符号化器(Auto Encoder)による事前学習
 5.9 Drop Out法による過学習の抑制
 5.10 自己符号化器を用いた深層学習による実習

<質疑応答・名刺交換・個別相談>

セミナー番号:AC170503

top

注目の新刊

雑誌 月刊化学物質管理

欧米主要国の保険・薬価制度

医薬品 倉庫・輸送の品質管理

粉砕の実務

脳・生理計測と感性評価

超親水・超撥水

2017年 医薬品GMP監査

失敗から学ぶ植物工場

治験薬の品質管理

二軸押出機

MW 臨床試験関連用語集

分野別のメニュー

化学・電気系他分野別一覧

  植物工場他

  機械学習他

ヘルスケア系分野別一覧

  海外関連

  医療機器

各業界共通
マーケティング・人材教育等

「化学物質情報局」

特許・パテント一覧 INDEX
(日本弁理士会 継続研修)

印刷用申込フォーム    

セミナー用

書籍用

会社概要プライバシーポリシー通信販売法の定めによる表示リクルート
Copyright ©2011 情報機構 All Rights Reserved.