機械学習 セミナー python 人工知能 講習会 ディープラーニング

サイトマップサイトマップ よくあるお問合わせよくあるお問合せ リクエストリクエスト セミナー会場セミナー会場へのアクセス リンクリンク
セミナーのメニュー
  ヘルスケア系
6月
7月
8月
9月〜

化学・電気系 その他各分野
6月
7月
8月
9月〜
出版物出版物
新刊図書新刊図書 月刊 化学物質管理Gmpeople
通信教育講座通信教育講座
セミナー収録DVDDVD
電子書籍・学習ソフトDVD
セミナー講師のコラムです。講師コラム
  ↑2018/6/18更新!!
お申し込み・振込み要領お申込み・振込要領
案内登録案内登録
↑ ↑ ↑
新着セミナー、新刊図書情報をお届けします。

※リクエスト・お問合せ等
はこちら→ req@johokiko.co.jp



SSL GMOグローバルサインのサイトシール  


機械学習 セミナー python 人工知能 講習会 ディープラーニング

*その他 機械学習・ディープラーニング・人工知能: 関連セミナー、書籍はこちら:


※定員となりましたので申込みを〆切ました。
※定員20名より増枠致しました(定員25名)(2018/5/31)。

※6月セミナーのキャンセル待ちはお問い合わせください(03-5740-8755)。

満員御礼のため10月に再開講します
10月15日「【PythonによるPC実習付き】機械学習入門セミナー(定員20名)」

【PythonによるPC実習付き】
機械学習入門セミナー(定員25名)

講師

埼玉大学 大学院理工学研究科 准教授 大久保 潤 先生

* 希望者は講師との名刺交換が可能です

講師紹介

■ご略歴:
 2007年,東北大学大学院情報科学研究科 博士後期課程修了.博士(情報科学)
 その後東京大学物性研究所 助教,京都大学大学院情報学研究科 講師を経て,2015年から埼玉大学大学院理工学研究科 准教授(現職).

■専門および得意な分野・研究:
 確率的情報処理,機械学習,確率過程の数理と応用.

■本テーマ関連学協会での活動:
 『機械学習を利用するための考え方のポイント』の講演に対して,
 計測自動制御学会 2017年度産業応用部門賞 奨励賞を受賞.

→このセミナーを知人に紹介する

日時・会場・受講料

●日時 2018年6月25日(月) 10:30-16:30
●会場 [東京・大井町]きゅりあん4階 第1特別講習室 →「セミナー会場へのアクセス」
●受講料 1名54,000円(税込(消費税8%)、資料・昼食付)
 *1社2名以上同時申込の場合、1名につき43,200円
 *学校法人割引;学生、教員のご参加は1名30,780円となります→「セミナー申込要領・手順」を確認下さい。

 ●録音・撮影行為は固くお断り致します。
 ●講義中の携帯電話の使用はご遠慮下さい。
 ●講義中のパソコン使用は、講義の支障や他の方の迷惑となる場合がありますので極力お控え下さい。
  場合により、使用をお断りすることがございますので、予めご了承下さい。
  *PC実習講座を除きます。


■ セミナーお申込手順からセミナー当日の主な流れ →

セミナーポイント

★前回開催時にご講演内容や実習の流れについて取材いたしました。よろしければご参考ください。
取材ページ

■はじめに:
 日常的な仕事のなかで「項目数がたくさんあるデータを分類する」「データに紛れ込んだ間違いを探す」といった作業はありませんか.「条件によって分類する」だけなら(データの量が多いと面倒ですが)単純です.でも,そのような単純な条件がわかっておらず,「過去,こうやって分類してきたから,なんとなく」という場合もあるのではないでしょうか.
 人工知能の基本的な技術である「機械学習」を使えば,例えば「過去のデータでの分類結果」を機械に学ばせることができます.学習させてしまえば分類作業を自動化できますし,生産性の向上を目指すこともできるでしょう.
 人工知能や機械学習は「流行って」います.ただし単なる流行というわけではなく,さまざまな分野での基本技術として今後使われ続けるものでもあります.そのため,機械学習に関わる用語や考え方を業務のなかで見かける機会が,今後ますます多くなると予想されます.
 本セミナーでは「自分で機械学習のプログラムを作成してみたいけれど,どこから手をつければいいか,わからない」「外部の業者に開発を委託するにも,何を依頼すればよいのか,わからない」といった機械学習の初学者向けに,ポイントを絞った解説をします.さらに,機械学習の開発現場でも広く利用されているPythonを使い,「データを準備する」「機械に学習させる」「学習した結果を利用する」という一連の流れを体験していただきます.もちろん,機械学習の技術を「きちんと」現場で使えるようになるためには,継続的に学び続ける必要があるでしょう.本セミナーを通して,今後の勉強や業務に役立つ機械学習の基本を身につけてもらうことが狙いです.

■ご講演中のキーワード:
 Python,分類問題,サポートベクトルマシン,ランダムフォレスト,クラスタリング,k平均法,混合ガウスモデル

■受講対象者:
 ・機械学習を学ぶきっかけが欲しい方
 ・機械学習のプログラムを自分で実際に動かしてみたい方
 ・まずは簡単なところから業務に機械学習を取り入れてみたい方
 その他,機械学習に興味のある方なら,どなたでも受講可能です(業種・業界は問いません)

■必要な予備知識:
 ・簡単な(Excel操作レベルの)パソコンの使い方(実習のため)
 (機械学習については本セミナで解説しますので,予備知識は不要です.Pythonのプログラミングについても本セミナで最低限度の解説をします.ただ,Python以外でもかまいませんのでプログラミングについての予備知識が少しでもあれば,実習を進めやすくなります)

■本セミナーで習得できること:
 ・機械学習の基本的な考え方
 ・機械学習に関する継続的勉強のための基礎力
 ・Pythonと機械学習ライブラリの利用方法の初歩
 ・データの準備から学習,利用までの流れの体験

★過去、本セミナーを受講された方の声(一例):
・短時間でしたが、捕捉の資料なども充実したよい講習だったと思います。
・ハンズオンの分量もちょうどよく、とても参考になりました。
・大変わかりやすく、時間配分なども適切で、良かったです。ありがとうございました。
・産と学の違いを意識された講義は印象的でした。
・Pythonによるデータ分析の導入としては十分に理解できる内容でした。
・資料が充実しており、復習しやすい点が良いと思います。入門セミナーですが実践的だと思いました。
・専門用語が多すぎず、とてもわかりやすかったです。
・自分で実際に動かしたい人には入門として向いている講習だと思った。

セミナー内容


1. 分類方法を,機械が学習するということ.
 1) 人工知能と機械学習の違いを知る.
 2) データをクラスAかクラスBかに分類する. [分類の基本]
 3) 機械学習と分類の基本を知る. [線形分類,2クラス分類]
 4) 機械学習の考え方を分解してみる.

2. 実習その1
 1) プログラミングの世界を,覗いてみる. [プログラミング基礎]
 2) Pythonに触ってみる. [Pythonの利用方法,基本的な文法]
 3) データの表をPythonで扱う. [numpyの基礎]
 4) Excelで作ったデータファイルをPythonで読み込む. [csvファイル]
 5) ライブラリ使って機械学習を試してみる. [scikit-learnの基礎]
 6) 実際にデータを分類してみる. [線形SVM(サポートベクトルマシン)]

3. 分類問題の,もう一歩踏み込んだ世界.
 1) 機械学習の歴史について簡単に知る.
 2) 単純に分類できないデータを変換する. [特徴空間,非線形分類]
 3) ほかの分類方法を知る. [決定木,ランダムフォレスト]
 4) データの前準備をする.[データの標準化]

4. 実習その2
 1) 単純に分類できないデータを扱ってみる. [SVM]
 2) ほかの分類方法を試してみる. [ランダムフォレスト]
 3) データの前処理を試してみる. [データの標準化]

5. 他の用途,他のモデル.
 1) データの種類に応じた機械学習を知る. [教師あり学習・教師なし学習]
 2) 見た目だけでデータを分類する. [クラスタリング]
 3) 用途に応じて方法を使い分ける. [k平均法,混合ガウスモデル]

6. 実習その3
 1) クラスタリングを試してみる. [k平均法,混合ガウスモデル]
 2) 異常なデータを自動検出してみる. [混合ガウスモデルの応用]

7. 今後のための,準備.
 1) 機械学習を次の値の予測に使う.[回帰]
 2) 機械の学び過ぎを防ぐ. [過学習]
 3) 学習と検証のためにデータを分割する.[訓練データと評価データ,交差検定]
 4) 最近話題の技術について知る. [ニューラルネットワーク,深層学習]
 5) 性能を発揮するために調整する. [パラメータチューニング]
 6) 機械学習を使う上でのポイントを知る.
 7) 今後の継続的勉強の準備をする.

【注意事項】
 ・実習で使用するPCは弊社にて用意いたします。
  お手持ちのPCをご希望される方はお問い合わせください。
 ・機械学習の手法については,数学的な詳細を扱わず基本的な考え方のみを説明します.
 ・本セミナーの目的は,今後の継続的勉強を念頭におき,機械学習の基本について学ぶことです.そのため基本的な題材に絞って解説・実習を進めます.
  最近話題の深層学習(ディープラーニング)については少し触れるだけにとどめ,実習はしません.
  機械学習を使っていくなかで,必要に応じて利用するものが深層学習です.深層学習はいわば[スポーツカー].アクセルを踏めば誰にでも走らせることはできますが,いきなり[スポーツカー]を乗りこなすのではなく,基本的な[走り方]を学びましょう.
 ・Pythonについてのセミナーではありませんので,最低限度の説明しかおこないません.
  これは逆に言えば,プログラミングの知識をそれほど必要としないでも,Pythonを使えば機械学習を試すことができる,ということです.
 ・もちろん,上記の点についても個別に質問があれば(可能な限り)説明をします.

セミナー番号:AC180645

top

注目の新刊

雑誌 月刊化学物質管理

数値限定発明

エポキシ樹脂

生体情報センシングデバイス

2018年版 CLP対応ラベル・SDS

規格試験

マテリアルズ・インフォマティクス

2018 車載カメラ徹底解説

セルロースナノファイバー

分野別のメニュー

化学・電気系他分野別一覧

  植物工場他

  機械学習他

ヘルスケア系分野別一覧

  海外関連

  医療機器

各業界共通
マーケティング・人材教育等

「化学物質情報局」

特許・パテント一覧 INDEX
(日本弁理士会 継続研修)

印刷用申込フォーム    

セミナー用

書籍用

会社概要 プライバシーポリシー 通信販売法の定めによる表示 商標について リクルート
Copyright ©2011 情報機構 All Rights Reserved.